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ME525 Applied Acoustics Lecture 1, Winter 2024

Peter H. Dahl

About class notes

• Use class website to download lecture notes, supplementary material, homework and upload assignments
• Notes posted for each lecture either before, or within a couple of hours after the lecture
• Typos happen (if you see them tell me!) Corrections posted asap
• There is no textbook. Many references to texts provided in the notes
• I can recommend several texts depending on your interests

Introduction

ME 525, Applied Acoustics, is intended to introduce acoustics through its various applications
and sub-fields, such as medical ultrasound, sonar and underwater sound, noise studies, and to
introduce new perspectives on data analysis that can be applied to your particular field of research.
The emphasizes on linear acoustics is important, an effect that encompasses the majority of our
everyday experience with sound along with many applications of acoustics.1

Linear Acoustics I: signals add without distortion

What is meant by linear ? This is understood from the perspective of our everyday sensation
of sound. I made this recording (Fig. 1) on my iPhone on a walk near Seattle’s Seward Park. The
sound is my own foot steps, plus a bit of laughing and talking by others walking nearby, plus a
ar stereo ”booming out” a very loud, low-frequency sound. The middle figure shows a expanded
scale of covering 0.5 sec– count the number cycles, about 20, so the frequency is about 40 Hz,
representing 40 cycles per second.

This frequency f , 40 Hz, is pretty low. For reference, middle C on a piano is ∼ 262 Hz. An octave
below middle C is 131 Hz and two octaves below is 65 Hz. The low-frequency car stereo sound is
difficult for PC speakers to broadcast with reasonable fidelity. Why? The speed of sound in air c is
about 343 m/s (commit this to memory, don’t worry about last digit). The wavelength of sound λ

representing a kind of spatial scale of the sound, is such that fλ = c (commit this memory), so that
λ = 8.6 m. That’s a big wavelength and you generally need a big thing to produce low-frequency,
large wavelength sound. In contrast you can easily hear the people talking on PC speakers.

1Numerous applications in acoustics involve non-linear acoustic phenomena such, shock waves and sonic booms,
and some applications in medical ultrasound. A solid foundation in linear acoustics is essential to proceed with further
.
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Returning to linearity, the bottom plot is shows result of high-pass filtering to remove this low-
frequency signal. Listening to this filtered signal reveals the talking sounds identical to the original,
non-filtered, recording. The two signals: (1) the annoying low-frequency car sound of high volume,
and (2) the sounds of people walking, add together without distortion. This is the result of linearity
where there is a linear superposition of the two signals with neither distorting the other. Such linear
superposition is also easily observed on the water for linear gravity waves when two boats pass,
their separate boat wakes interact briefly producing a complex pattern, after which the wave field
from each boat continues undisturbed.

Figure 1: Top: Original signal recorded on my iPhone. Red region highlights a very loud segment
”narrow band” noise coming from a car stereo about 200 m away. Middle: expanded segment
illustrating that frequency of the loud segments is about 40 Hz. Bottom: data filtered to remove all
frequencies below 50 Hz.

Another view is of these data is the frequency spectrum (Fig. 2) showing the distribution of
acoustic energy as a function of frequency Acoustic data nearly always is in the form of distribution
of acoustic frequencies (unless the sound is of signal, pure tone), characterized in the form of a
spectrum or more formally, the spectral density. We’ll have occasion to work this issue later in
course, but for now notice the upper plot showing a spectrum that appears to be dominated by
one narrow band of frequencies, near 40 Hz, which originates from the car. This is indeed true,
but the linear plot cannot give the full picture, and very often in acoustics a log-scale (bottom plot)
is needed to show the full picture. Notice the car stereo and the talking sounds are separated by
nearly four-orders of magnitude! Only a log-scale can properly convey such information– keep this
mind as we move forward in this class. Use of a log-scale to convey the enormous dynamic range
often observed in the acoustic data is the same as expressing such data in decibels, abbreviated as
dB. We’ll also have more to say about dB.
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Figure 2: Top: Normalized variance spectrum of the recording plotted in linear scale Bottom: same
data but now plot in log scale for y-axis that shows the more clearly variance contributions from
car stereo and ordinary conversation.

For those interested listening to the data, a wav file, representing a 15-s sample of this sig-
nal is available in the supplementary folder for this lecture. To examine the data in matlab use:
[signal,freq] = audioread(’LFsig.wav’);. The data is contained in signal and the
sampling frequency identified by freq.

A simple example of sound speed c and echo timing

A recent visit to an underground parking garage allowed me to carry out another quick exper-
iment. I noticed that a sharp clap of my hands produced a series of clearly audible echoes which
I dutifully recorded. A 2-s recording made with my iPhone shows the recording amplitude A as
function of time (Fig 3) . Note that amplitude A is in some arbitrary unit, e.g., voltage; for the
purposes of this experiment we don’t need to know more. The echoes are just barely viable in the
upper plot which in a linear scale in amplitude. But they are easier to see in the lower plot which
is in a logarithmic scale.
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The logarithmic scale is a special one we like use in acoustics to convey large changes in mag-
nitude: the decibel scale, or dB scale. Careful using it, but remember this simple rule: a general
dB computation involves 10 log10 of some squared acoustic amplitude measure. In this case the
amplitude measure is just A; notice that 20 log10 |A| follows the simple rule.

In this dB-view the echoes which have amplitude considerably less than the initial sharp clap,
are easily seen. I made the recording about where the car is shown in the photo, and afterwards
paced out a range R of about 45 to 50 m to opposite wall from which the photo was taken. Thus
the travel time for the first echo ought to be 2R/c or ∼ 0.29 s, with each successive echo occuring at
this interval. The data suggest that my R estimate for the far wall is nominally correct. The time ,
0.29 s, has implications as to how we might communicate in this garage–if I’m talking really loud,
then a repeat of my voice commences after 0.29 s, with perhaps third replicate after another 0.29 s,
which can make conversation difficult.

The data (dB version) also shows a gradual decay over time of the background consisting of
many small echo contributions for which the source is more difficult to identify. This is background
is often referred to as “clutter”, to distinguish it from the more distinct echoes. A similar experiment
conducted underwater might involve an airgun that produces echoes from the seafloor. The speed
of sound in water is ∼ 1500 m/s (memorize), but as we shall see, small variations in this speed over
water depth has a huge impact in underwater acoustics, e.g., whether you can detect a submarine
with sonar, or not.

Figure 3: Left Top: Recorded signal amplitude versus time. My hand clap produces the signal at
time zero. Bottom: same signal expressed in dB space. Arrows identify 5 echoes associated with
initial clap signal. Right: photo of the underground garage scene.
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Linear Acoustics II: acoustic variables are small compared to their ”background” state

Acoustic pressure and acoustic velocity

Sound is an example of a mechanical wave, whereby a characteristic, such as sound pressure,
is transmitted via wave action through the medium such as air, water or the earth. Sound pres-
sure is the most commonly understood characteristic, but there are others, and we’ll refer to them
collectively as acoustic variables. Importantly, these acoustic variables are linearly related to each
other.

Sound wave shares many attributes with waves on the surface of water, but instead of alternate
crests (high water) and troughs (low water), with sound there are, in the case of pressure, alternate
regions of compression (high pressure) and expansion (low pressure) of the medium. In the fol-
lowing, let us limit discussion of sound within a medium composed of air or water, and to a good
approximation many biological tissues, each representing a kind of “fluid” media. The mechanical
wave requires both restoring force and some mass to produce inertia inertia (think of spring/mass
system and simple harmonic motion).

For water waves the restoring force is gravity, for sound waves the restoring force is the fluid’s
compressibility, or the opposition that the fluid exhibits against being compressed. Once the fluid
is compressed it will return to its original state. But inertia of the fluid mass causes the fluid motion
to ”overshoot” this state and reach an expanded state. The fluid’s compressibility property again
acts on this but in reverse and the process of alternate regions of compression and expansion (also
known as rarefaction) continues. Thus, the fluid mass (density) and spring constant (compressibil-
ity) are needed to produce wave motion.

Pressure is by far the most commonly used acoustic variable describing sound, e.g., as detected
by our ear drums, microphones, hydrophones, etc. Pressure represents the dynamic part of the
sound field. But there are also kinematic parts: acceleration, velocity, displacement, all involving
small motions of the medium and intimately linked with pressure.

To describe the variation of the dynamic and kinematic quantities in space and time associated
with a sound wave, we need an acoustic wave equation. We’ll derive this by relying on the as-
sumption of linearity which in turn depends on the smallness of these quantities as related to their
background state. Many solutions of the acoustic wave equation will already be familiar, such
simple harmonic motion.

Call the pressure in the absence of sound a steady state, or background, pressure, p0. For exam-
ple, underwater p0 = Patm + Pgauge representing all the pressure of the atmosphere (about 105 Pa as
sea level) plus the constant increase in pressure with depth (the gauge pressure) which equals ρ0gH
where H is depth and g is gravitational constant (keep everything in MKS!) In air the background
pressure is p0 = Patm.
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Identify p1, as the acoustic pressure caused by a sound wave passing through a region of the
medium (water or air) and it represents a very small ”perturbation” about p0 such that

p1/p0 << 1 (1)

The length scale of that region over which the perturbation exists is the sound wavelength.
Let’s test: my voice if reaching you in an ordinary classroom setting is about 0.02 Pa so with

po = 105 Pa, we for sure have |p1|/|p0| << 1. Incidentally this 0.02 Pa represents about 60 dB re 20 µ

Pa, meaning “with reference to” 20 µ Pa. Computing a dB value for a genuine measured pressure
(unlike the iPhone data in Fig. 3) then a reference pressure is used and the dB value is based on
the ratio. Thus 60 dB = 20 log10(0.02/20 ∗ 10−6) The reference pressure for airborne sound is derived
from the nominal threshold of hearing, equal to 20µPa, thus the equivalent dB value for hearing
threshold is 0 dB. The ”threshold of pain” in for human hearing is about 2 Pa, which translates to
100 dB re 20 µ Pa). Note that even at this very high amplitude it is clear that |p1|/|p0| << 1 still
holds.

In general we can identify the acoustic pressure p1(x⃗, t) as a function of spatial position vector
x⃗ and time t. Let’s note for completeness that p0 can also vary spatially, e.g., underwater p0 is
increasing by 105 Pa for every 10 m increase in depth, and in the atmosphere temporal changes
occur with barometric pressure but on very large time scales. But both spatial and temporal changes
in p0 are on scales not comparable to the majority of acoustic processes and for our immediate
purposes p0 can be considered a constant in both space and time which, as we shall see, rarely
enters into our analysis.

In terms of kinematic parts of the sound field we start with acoustic velocity u⃗, or acoustic fluid ve-
locity. Acoustic pressure and velocity are the two most important acoustic variables, because with
their combination we can identify acoustic energy and intensity (as shown later). For simplicity
we skip the subscript 1 in u⃗ because although winds in the atmosphere and currents underwater
produce can mean flow speed of u⃗0, these need not enter into our analysis for our purposes of un-
derstanding linearity and the developing the wave equation; we are safe to assume u⃗0 = 0 (some
caveats to this will be discussed later).

Note that acoustic velocity u⃗ is also often referred to as particle velocity. This term finds wide-
spread, but not universal, use in journal articles and texts. Even though I’ll confess having used it,
too, in some of my journal articles. I prefer to use the equally descriptive acoustic velocity since
(as we show) u⃗ is linearly related to p1 and both are properties of a continuous fluid medium.
Still, many good texts do use the term particle velocity but are also careful to provide some con-
text about constitutes a fluid particle (or fluid parcel), e.g. a reasonably useful definition is from
Fundamentals of Acoustics: ”The term particle of the fluid means a volume element large enough
to contain millions of molecules so that the fluid may be thought of as continuous medium yet
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small enough that all acoustic variables may be considered nearly constant throughout the volume
element. ”

Such context becomes more important when thinking about the Euler versus Lagrange descrip-
tions of fluid flow. The Eulerian description means we are not studying a particular fluid parcel but
instead the flow of fluid through some fixed control volume dV centered about a fixed laboratory
reference frame. This is the most common approach in the study of dynamics and motion within
the field of fluid dynamics, of which acoustics is branch of this field. We view dV as control volume
and the Eulerian laboratory reference frame fits well with our notion of an acoustic sensor, e.g.,
microphone, or hydrophone, at a fixed position within the fluid medium. The alternative approach
is a Lagrangian description, which defines the measurement process by following the motion of
a particular parcel of fluid, say identified with colored dye. A good discussion on this topic is
provided by Garrett (p. 425-430). To summarize, in ME 525 we will only use acoustic velocity (or
sometimes I will slip in fluid velocity), to describe the small velocity of the fluid associated with the
presence of a sound wave. We will use the Eulerian description, meaning the acoustic velocity is a
function of the position x⃗ with components x, y, z and time t where it has been measured. Thus, as
with acoustic pressure, we write u⃗(x⃗, t).

First key relation: Conservation of momentum (Euler’s equation)

In the following we develop the acoustic wave equation from two key relations, the linearized
conservation of momentum and conversation of mass. First, let fluid density (e.g., air or water
medium) ρ be equal to ρ0 the background mass density, plus ρ1 equal to the change in density as
result of passage of the sound wave, where |ρ1|/ρ0 << 1, (using |ρ1| as ρ1 can sometimes be positive
or negative, to represent a slight increase or decrease, respectively, in density. Let’s reiterate how
this works in the case of pressure and density:

p = p0 + p1 + p2 + ...

ρ = ρ0 + ρ1 + ρ2 + ....

where pressure p and density ρ are composed of a series of successively smaller starting with the
“zeroeth order” term, representing the largest background contribution, as in p0 representing at-
mospheric pressure. Our interest is first order terms associated with sound as in p1, ρ1 which are
already very small with respect to the backgrounds p0, ρ0, with the second order terms p2, ρ2 even
smaller yet. However the second and higher-order terms can come into play in study of non linear
acoustics.

The rules for linearization are simple: (1) products of small first order quantities (including
temporal or spatial derivatives) are ignored (2) keep any product of a first order quantity times
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a constant or otherwise a zeroth order quantity such as ρ0. The small acoustic field quantities
introduced thus far are p1, ρ1 and u⃗. We also assume that background quantities, as in p0 and ρ0 are
constant (steady state), with spatial and temporal derivatives equal to zero.

For example, apply this rule to ∂(ρu)
∂x

which equals u ∂ρ
∂x

+ ρ∂u
∂x

. The first term is eliminated given
∂ρ0
∂x

= 0 and u∂ρ1
∂x

is ignored as it represents a non-linear product of small quantities. Next convince
yourself that the linearized version of second term is ρ0 ∂u∂x which is truly linear in the small variable
u, multiplied by a constant ρ0.

Now again let p stand for total pressure, equal to p0 + p1. For this condition of a sound wave
traveling only in the x−direction there exists a pressure differential p(x) and p(x + dx) that acts
on both sides of a control volume dV (Fig. 4) of cross section S, centered about a fixed laboratory
reference frame, with origin x, y, z = 0. The pressure difference gives a net force in the x direction:

Figure 4: Sound propagation in either positive or negative x-direction produces a pressure differ-
ential p(x) and p(x+ dx) that acts on both sides of a control volume dV of cross section S, centered
about a fixed laboratory reference frame, with origin x, y, z = 0.

S(p(x)− p(x+ dx)) = −S
∂p1
∂x

dx (2)

This net force translates to ”mass times acceleration” within the small volume:

−S
∂p1
∂x

dx = Sdxρ
∂u

∂t
(3)

where the acoustic velocity vector u⃗ has components [u, v, w] with u representing the x-component.
Use the rules of linearization and find:

−∂p1
∂x

= ρ0
∂u

∂t
. (4)
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The more general case where the sound in the y and z direction is also involved is:

−∇p1 = ρ0
∂u⃗

∂t
(5)

This is the linearized form of Euler’s equation most often used in acoustics. It is linear because the
first order, acoustic variables involved, p1 and vecu show up in linear manner; the fact that p1 is
subject to a spatial derivative and vecu to a temporal derivative, doesn’t matter. This equation will
later be combined with a linearized form of the conservation of mass to obtain the wave equation.

Summarizing, we have now have the following acoustic variables: p1, ρ1 and u⃗. All are small
with respect to background values; they are collectively referred to as first-order variables, which
also applies to their spatial or temporal derivatives. We can also identify acoustic displacement ξ⃗,
such that ∂ξ⃗

∂t
= u⃗, and acoustic acceleration a⃗, where ∂u⃗

∂t
= a⃗. Notice that Eq.(5) implies that gradient

of acoustic pressure ∇p1 equals −ρ0a⃗, which is a very useful result. Preliminary Note on Acoustic

Energy and Intensity Quantities

Later in the course we work with acoustic energy and intensity quantities. Having worked out
some rules for linearization involving the small acoustic variables, it is important to recognize the
following. The point is made with acoustic potential energy which equals 1

2

p21
ρc2

in J/m3 assuming
MKS units for ρ0 (kg/m3) and p1 (Pa). What happened to our rule of ignoring squares of small
quantities? The answer: for the linearizing effort yielding Eq.(5), we find the first order quantities
are the largest terms, or referred to as leading order terms. Linearizing in this manner ultimately
leads to the acoustic wave equation, an expression which is linear in these first order quantities.
However, once the analysis pivots to acoustic energy (or intensity) , squared combinations of first
these order acoustic variables as in p1, u⃗, become the leading order terms

Example measurement of acoustic pressure and velocity

Let’s finish with a short example of acoustic measurements made underwater, and a comment
on the diverse field of acoustics.

Figure 5 is measurement of the pressure and Cartesian components of acoustic velocity, u⃗, given
by [u, v, w], of the underwater sound from an explosive source (31 g of TNT), made at range 10 km
from the source in waters 75 m deep (as measured by my research team off New England.) The
pressure (top row) reaches about 250 Pa in amplitude (quite high). Notice how pressure oscillates
around a mean value of 0, which is what we expect for sound. Putting this more into perspective,
background noise might reach a peak value of about 1 Pa. However, does 250 Pa still satisfy our
notion of p1/p0 << 1?

The three components of acoustic velocity are shown in the bottom row. Notice the y-component
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Figure 5: Acoustic pressure (top) and three components of acoustic velocity (bottom) of the un-
derwater sound from an explosive source (31 g of TNT), made at range 10 km from the source in
waters 75 m deep. Figure from Dahl and Dall’Osto (2019)

is the largest. This is because the explosive source bearing was aligned with y-axis of our sensor.
The magnitudes of the [u, v, w] are actually relatively large, e.g, with v being on the order of 0.25
mm/sec. Do these very small velocities also make sense? We’ll know more as we learn about the
relationship between acoustic pressure and fluid velocity; a key part of the relation is the quantity
ρ0c where c is the speed of sound in medium. With water having c about 1500 m/s means the
acoustic mach number |u⃗|/c is clearly small, being of order 10−6, which we write as O(10−6).
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The diverse field of acoustics

Figure 6 is kind of an old-fashioned figure, representing the the ”wheel of acoustics” , a sketch
made by R. Bruce Lindsey to summarize the diverse field of acoustics. Lindsey was a Professor of
Physics at Brown University and (at the time) Editor-in-Chief of the Journal of the Acoustical Soci-
ety of America, or JASA, the preeminent scientific journal for all things related to sound, published
by the Acoustical Society of America, or simply the ”ASA”.

But the wheel is from 1965, and it gives only the most broad sketch of the field of acoustics as
one might have viewed it 50 years ago. Since then we’ve seen noise canceling headphones, artificial
speech and voice recognition (e.g., the Amazon ”smart speaker”), advances in simulation of sound
in air and underwater, with the field ever changing.

Go to https://exploresound.org/, produced by the ASA, to find out more about the very di-
verse field of Acoustics. Also, I encourage you visit the website of Acoustics Today (https://acousticstoday.org),
a magazine produced by the ASA that you can download for free, including back issues, which
also has an excellent on-line presentation. An issue in early 2020 has an article by my former PhD
student, David Dall’Osto, on the finding of the Argentine submarine San Juan using advances in
underwater acoustics. An issue in 2023 has article Dall’Osto along with me together with our col-
league Ross Chapman on the sound of underwater explosions. There’s even an article on how
plants can generate and respond to sound, and the new field of plant bioacoustics.

Returning now to the ”wheel”, I’ve highlighted in yellow my two broad areas of study, most
of which involves underwater acoustics. Within this area there are many sub-specialties, as in
underwater communication, sonar design, acoustical oceanography, etc. The goal of this course is
to introduce acoustics through its various applications and sub-fields, such as medical ultrasound,
sonar and underwater sound, noise studies and to introduce new perspectives on data analysis that
can be applied to your particular field of research. So, I’m necessarily informed by my studies in
underwater sound. But in the field of acoustics, techniques and concepts learned in one application,
readily translate to other applications.
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Figure 6: Lindsay’s Wheel of Acoustics, sketch by R. Bruce Lindsey (former Editor-in-Chief of the
Journal of the Acoustical Society of America) showing the fields of acoustics as they were viewed
in 1965, starting with the four broad fields of Earth Sciences, Engineering, Life Sciences, and the
Arts.
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ME525 Applied Acoustics Lecture 2, Winter 2024

Peter H. Dahl

More on the general characteristics of sound

The fluid medium through which sound is propagating is characterized by a volume elasticity,
the springlike property of the medium called compressibility, and often identified with symbol κ.
Together with the fluid’s mass characterized by density, you can roughly think of the fluid acting
as a chain of masses and springs that allows a sound wave to propagate.

The speed of sound propagation in a fluid medium is c =
√

1
κρ0

. A medium that is ”more com-
pressible” such as air, has a larger κ and lower sound speed, and less compressible medium such
as water has lower κ and higher sound speed. Keep in mind that the κ for a medium, such as air
or water, may vary somewhat depending on conditions. For air the main influence is temperature,
and a useful empirical relation for the sound speed in air is c ≈ 20.05

√
273.16 + T such that the

speed (cair) is about 343 m/s at room temperature (using 20◦). For water the main influences are
temperature, salinity, and depth and for present purposes use a nominal value cwater ≈ 1500 m/s.
But we’ll come back to this later, as the variation of sound with altitude in air, or depth in water,
drives an important feature of sound propagation known as refraction.

Second key relation: Conservation of mass

In Lecture 1 we arrived at equation for the linearized conservation of momentum (Euler’s equa-
tion). Here we derive the next key relation which is the linearized conservation of mass.

The equation of conservation of mass (also called continuity) gives a relationship between den-
sity ρ and acoustic velocity in the process of acoustic wave motion that necessarily involves a com-
pression and expansion of the medium. We continue studying a small volume dV with cross section
S set within a fixed, Eularian reference frame (Fig. 1). The mass flow into the elemental volume
evaluated at x=0 is ρuS|x=0 having dimension mass per unit time or M

T
, and the mass flow out of

the elemental volume is ρuS|x=dx. For conservation of mass, the difference ought to equal the time
rate of change of mass within the volume (ρSdx) giving

∂(ρSdx)

∂t
= (ρuS)|x=0 − (ρuS)|x=dx (1)

the left side representing the time rate of change in density within the volume Sdx, from which we
eliminate S and recast as formal, partial derivative

∂ρ

∂t
+

∂(ρu)

∂x
= 0. (2)

Now linearize Eq. (2), where ∂(ρu)
∂x

equals u ∂ρ
∂x

+ ρ∂u
∂x

. Eliminate the first term given ∂ρ0
∂x

= 0

and u∂ρ1
∂x

is ignored as it represents a non-linear product of small quantities. Convince yourself that
what remains of the second term in ∂(ρu)

∂x
is ρ0 ∂u∂x which is truly linear in the small variable, ∂u

∂x
, which

here is multiplied by a constant ρ0 considered a steady state, constant background value.
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Figure 1: Fixed elemental volume of fluid dV = dxdydz, through which there is fluid motion characterized
by the acoustic velocity in the x-direction equal to u, representing an in-flow (left) and out-flow (right) of
mass. The volume dV is situated at fixed laboratory (Eulerian) reference frame.

We thus arrive at a 1-D linearized conservation of mass

∂ρ1
∂t

+ ρ0
∂u

∂x
= 0 (3)

and this is generalized to 3D by studying the mass flow through a cube, giving

∂ρ1
∂t

+ ρ0∇ · u⃗ = 0. (4)

It’s worthwhile doing this another way (Fig. 2) while introducing another small acoustic vari-
able: acoustic displacement vector ξ, with Cartesian components [ξx, ξz, ξz]. The acoustic displace-
ment ξx is acting to “stretch” a piece fluid as result of the acoustic disturbance–indeed the piece
of fluid can stretch, or compress, the degree to which is characterized by κ. Conservation of mass
requires a balance between new volume [dx+ ξx(x+dx)− ξx(x)]S times the new density ρ0+ρ1+ ...
equate to the original mass in the absence of sound ρ0Sdx.

We again linearize and arrive at

ρ1 + ρ0
∂ξx
∂x

= 0 (5)

and for the process in 3D this relation becomes

ρ1 + ρ0∇ · ξ⃗ = 0. (6)

Taking the time derivative of Eqs. (5) and (6) gives Eqs (3) and (4), respectively. Look carefully at
the dimensions of the two terms Eqs. (5) and (6) – they must each have the dimension of density
which ML3, and means ∂ξx

∂x
or 3D counterpart, ∇ · ξ⃗ are non-dimensional.
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Figure 2: A volume dV = dxdydz, originally under equilibrium, is stretched (highly exaggerated in this
figure) due to difference in displacements in the x−direction ξx at x and x+dx. Sound propagation direction
is restricted to the x−axis (red arrow); whether sound is going left to right or vice versa is not relevant.

To interpret ∇· ξ⃗, think first about ∂ξx
∂x

, if ∂ξx
∂x

> 0 then the cube has been stretched a small amount
along the x−dimension (Fig. 2) The stretched volume (now larger) produces a small change in
density ρ1 that is negative. The small, positive, and non-dimensional ∂ξx

∂x
multiplies the background

density ρ0 to balance this according to Eq.(5). The opposite happens for ∂ξx
∂x

< 0 producing a small,
positive ρ1.

The expression ∇ · ξ⃗ is divergence of displacement,

∇ · ξ⃗ =
∂ξx
∂x

+
∂ξy
∂y

+
∂ξz
∂z

(7)

which is known as cubic dilation.
We have now encountered two applications of the differential operator ∇. The first ∇p1 from

the linearized Euler equation [Eq(5) of Lecture 1], takes the gradient of the scalar acoustic pressure
p1 and yields the new vector

∇p1 = [̂i
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
]p1 (8)

where î, ĵ, k̂ are unit vectors in the x, y, z directions. The second, ∇ · u⃗ or ∇ · ξ⃗, operates in similar
manner but on a vector quantity, and yields a scalar. The dot-product relation insures components
of the vector are matched up with spatial derivatives along corresponding axes, as in Eq.(7).

A practical application
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The linearized form of Euler’s equation from Lecture 1 states that a pressure gradient, divided
by ρ0 gives the vector acoustic acceleration a⃗. One simple way to obtain this gradient, or spatial
derivative, is to take the finite difference between pressure measurements made from two closely-
spaced hydrophones (underwater) or microphones (air). The pressure gradient in the direction
along the axis of the two sensors (divided by ρ0) yields the acoustic acceleration along that same
axis.

This equation is also very important in noise control. If we can measure a⃗ or u⃗ then we also know
more about the direction of sound, and the propagation of sound energy (more on that later). For
example, the commercial sound intensity probe (Fig. 3) measures and localizes sound emissions
from a kitchen appliance. In addition to small appliances, you can well imagine car and airplane
manufactures doing this to localize and reduce sound sources. The probe works by having two
microphones precisely held in place with small separation (∆r in the figure). A pressure gradient
is measured in the r direction (here called ∂p

∂r
); in this case acoustic velocity rather than acceleration

is desired so the time integral of a⃗ is estimated to yield u⃗.

Figure 3: In upper figure an intensity probe is used to ”see” sound from an egg-beater coming from different
directions in order to localize various sound sources for the purpose of more effective noise reduction. In
the lower figure we see the basic mathematics of an intensity probe. This is based on a finite difference
approximation for the pressure gradient using pressure measurements pA and pB separated by ∆r

Summarizing Lectures 1 and 2, the key points are:

• Linear acoustics: different sounds add without distortion!

• Take advantage of successive approximation series, e.g., for fluid density: ρ = ρ0+ρ1+ρ2+ ...,
where ρ1/ρ0 << 1. The steady-state background (equilibrium) density = ρ0.

Copyright © 2024 P. H. Dahl. All Rights Reserved.



5

• For the linearization: products of two small quantities are ignored: e.g., u∂ρ1
∂x

<< ρ0
∂u
∂x

• Acoustic data can range over several orders of magnitudes. Consider plotting in log scale–
don’t get lazy with a linear scale or you can loose the big picture!

• We arrived at a linearized conservation of momentum (Euler’s equation): −∇p1
ρ0

= a⃗ which is
a vector equation,

• and the linearized conservation of mass (continuity): ∂ρ1
∂t

+ ρ0∇ · u⃗ = 0, which is a scalar
equation.

• Pay attention to dimensions! Do these equations make sense in terms of fundamental dimen-
sions (mass, length, and time or M,L, T )? There is no cheaper insurance than good practice
in dimensional analysis.
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Lecture 2 Appendix: The divergence theorem

The purpose of this appendix is to give you a feel for how to address conservation principles
in a more arbitrary volumes using some techniques in vector calculus. If you’ve taken ME 564 you
are likely familiar with some of these techniques, but if not–then try to follow the meaning of these
equations anyway using dimensional analysis. We don’t really use such techniques in this course–
so again this is just for your background–however I will provide an interesting example of their
use later in the quarter.

For an arbitrary vector field A⃗ the divergence theorem of Gauss allows us to write∫
S

A⃗ · dS⃗ =

∫
V

∇ · A⃗dV (9)

where the volume V is bounded by the surface S.
Conservation of mass situation for an arbitrary volume subject to an acoustic disturbance is as

follows:
∂

∂t

∫
V

ρdV +

∫
S

ρu⃗ · dS⃗ = 0 (10)

The first term is the time rate of change of mass inside volume V which must be balanced by the
new mass inflow/outflow through the boundary S. The vector dS⃗ has magnitude dS and direction
outward normal to the arbitrary surface S.

Apply next the divergence theorem to get everything into one volume (including bringing the
time derivative inside the integral) ∫

V

∂ρ

∂t
dV +

∫
V

∇ · ρu⃗dV = 0 (11)

This situation must apply to an arbitrary volume, and thus the two volume integrals can be com-
bined, and the integrand set to 0, giving

∂ρ

∂t
+∇ · ρu⃗ = 0 (12)

Again linearize to arrive at:
∂ρ1
∂t

+ ρ0∇ · u⃗ = 0 (13)
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ME525 Applied Acoustics Lecture 3, Winter 2024

Peter H. Dahl

The acoustic Equation of State

The equation state provides a functional relationship among thermodynamic variables density,
pressure and temperature, such as ρ = ρ(P, T ) or P = P (ρ, T ), as in the ideal gas law from chemistry
PV = nRT where n in the number of moles, R is the gas constant, and P, V and T are pressure,
volume and temperature.

For our purposes start with a generic equation of state: p = p(ρ), and do a Taylor series expan-
sion around the background density ρ0 as follows:

p = p(ρ0) +
dp

dρ
|ρ0(ρ− ρ0) +

d2p

dρ2
|ρ0

(ρ− ρ0)
2

2
+ ... (1)

Identify the first term as background pressure p0, identify (ρ − ρ0) as ρ1, and associate a new con-
stant, the square of sound speed c2, with dp

dρ
|ρ0 . We can stop at this first, linear term, and thus

evidently
p1 = c2ρ1 (2)

which represents our key relation between the two acoustic flow variables p1 and ρ1, and which is
the acoustic equation of state.

Note that Eq.(1) follows from Blackstock (p. 32), but not exactly, as there it is formulated slightly
differently to identify coefficients A,B,C.. in successive terms starting with the second term in
Eq.(1), but yielding same result. In study of non-linear acoustic effects, such as in the fields of
industrial or medical ultrasound, one often come across the phrase ”B-over-A”, representing an
important parameter quantifying non-linear effects. Blackstock also refers to a ”small signal speed”
c0, for the important relation p1 = c20ρ1, to leave room for discussing the non-linear influences
embodied by the higher order terms in the above series expansion.

However, stopping at the first term satisfies most engineering applications and officially, you
may now associate change in pressure associated with sound, p1 with corresponding change in
density ρ1 via a constant c2 without subscript. This is a nice example of how in linear acoustics, two
small acoustic variables p1, ρ1 are related through a constant; in this case it is c2. It also provides
a convenient pathway for how we can measure very difficult-to-observe quantities, like ρ1–how
might one do that? First measure p1 using a microphone in air or hydrophone underwater, then
divide by c2 which we already know (or can look up in tables).

For example, take an acoustic pressure p1 of ∼ 2 Pa, representing the sound pressure experi-
enced were you to sit on the hood of car with big ”chevy” V8 engine while the engine was throttled
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up to high RPM (you people probably don’t even remember a ”chevy”, or even a V8). Using c of 343
m/s, means ρ1 is only about 1.7 10−5 kg/m3, which is a pretty small change from the background
density of air given this very loud sound.

In Lecture 2, we identified κ as compressibility, such that c =
√

1
κρ0

, so clearly the acoustic
equation of state addresses the property compressibility in the medium. Another relation is the
bulk modulus K of the fluid where

K = ρ0
dp

dρ
|ρ0 (3)

therefore K = ρ0c
2 or c =

√
K
ρ0

; it thus follows that K = 1/κ. (As with κ, it is likely you will come
across different notations for the bulk modulus in different texts.)

Now, K can be interpreted as the ratio of the pressure increase to fractional volume decrease,
caused by increased pressure, thus K has the same dimension as pressure. For example, K for
seawater is about 2.3 GPa, and for air it is about 116 kPa. Let’s revisit Lecture 2, Eq.(6) from Lecture
and recast it as follows:

p1 = −K∇ · ξ⃗ (4)

Assume next a small increase in pressure p1 = 1Pa for a cubic meter of water caused by sound,
given K the relative change in this volume is 1/K or about ∼ 4 10−10. Repeat this for a cubic meter
of air and the same pressure produces a relative change of ∼ 9 10−6, or a more than a 10000 fold
increase in expansion over that of water.

The Wave Equation

An equation for acoustic wave propagation (wave equation) now falls into place given that we
have a workable acoustic equation of state in the form of Eq. (2). First summarize the two key parts
that combined to form the wave equation:
The linearized conservation of mass:

∂ρ1
∂t

+ ρ0∇ · u⃗ = 0 (5)

The linearized Euler’s equation (conservation of momentum):

ρ0
∂u⃗

∂t
+∇p1 = 0 (6)

1. Take the divergence (∇·) of Eq. (6) to get:

ρ0
∂

∂t
∇ · u⃗+∇2p1 = 0 (7)
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2. Take the time derivative ( ∂
∂t

) of Eq. (5) to get:

∂2ρ1
∂t2

+ ρ0
∂

∂t
∇ · u⃗ = 0 (8)

now observe:
∇2p1 −

∂2ρ1
∂t2

= 0 (9)

3. Finally apply the acoustic equation of state to eliminate ρ1 from the above to arrive at a wave
equation for acoustic pressure, to yield

∇2p1 −
1

c2
∂2p1
∂t2

= 0 (10)

and 1-D counter-part if sound propagation is limited to one direction, say along the x-direction:

∂2p1
∂x2

− 1

c2
∂2p1
∂t2

= 0. (11)

Observe that wave equation uniquely relates the rates of change of p1 with respect to posi-
tion and time with the latter scaled by 1/c2. The same equation applies to the other acoustic vari-
ables, for example, convince yourself that a 1-D wave equation for acoustic displacement in the
x-direction ξx is

∂2ξx
∂x2

− 1

c2
∂2ξx
∂t2

= 0 (12)

Some simple interpretations of the acoustic wave equation

Solutions to the wave equation depend on the boundary conditions e.g., if sound is to be studied
in open air, within a closed room, or underwater, these all require different boundary conditions
to represent walls or the air-water interface, etc. Additionally, the right hand side of Eqs. (10-12)
currently equal 0, meaning the equation is homogeneous. Adding sound sources, changes this. We
postpone discussion on sources for later; for now let us see how basic solutions go, and to what
extent they describe what we already perceive in our own acoustic world.

A basic solution to the wave equation is in the form of p = F (x ± ct), (similarly for ξ, u). The
±ct accommodates a wave traveling backwards or forwards in the x-direction. To fix ideas, assume
for now p = F (x − ct), and this will have the meaning of a sound wave traveling in the positive x
direction.

The arbitrary function F (Fig. 1) might describe acoustic pressure at time t1 at a specific position
x1, or F (x1− ct1) associated with some acoustic disturbance in the fluid. After an increment of time
∆t the function F will have moved to position x = x1 +∆x. The argument of F remains the same
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Figure 1: A simple shape function F describing pressure p as function of x. Solid line shows shape function
F at time t1 and dashed line at time at time t1 +∆t.

however, as in x1 − ct1 equals (x1 +∆x)− c(t1 +∆t), because the wave has traveled ∆x = c∆t. In
other words, after a short time ∆t the same value of pressure will repeat further down the x-axis,
or the whole function F , which we might call a shape function, moves from left to right, with same
value p1(x1) occurring at position x1 + ∆x. The velocity of travel of the entire shape function F is
∆x/∆t = c.

Though this illustration is a bit simplified, it still shows how the shape-preserving property
of the wave equation for small-amplitude disturbances (i.e. ordinary sound waves) which has
profound implications: were this not to be the case, then those sitting a few rows ahead of you in
a theater would have a very different sound experience, because the basic shape of the waveform
would very with distance.

There is a distance-effect relating to the amplitude of sound, e.g. the spreading of sound with
range from source, which we discuss later, but it is this shape-preserving property that is key to
the propagation of sound in the linear regime. You should check out some of the sound wave
visualization demonstrations on the websites I’ve posted on our ME 525 website.

Closely related to the shape-preserving property is the concept of linearity and superposition.
Let now an acoustic pressure field consist of the sum of N sources, as in p1 =

∑N
i Fi(x− ct) where

the shape function of the ith source is Fi(x− ct). The total sound field is a linear superposition of the
individual sources, for which the final result can be very complex but within that result individual
sources contribute (and can be heard) without distortion caused by other sources, e.g., as in the
recording discussed in Lecture 1.

Were linearity not to be the case the net result of sound symphony orchestra would be a ca-
cophony. If you want to observe linear superposition in action, look closely at two gravity wave
fields coming from different directions on the sea surface. If these eventually meet then at that spot
there is momentary change in the sea surface shape, after which the two wave trains pass each as
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if nothing happened. Finally, note that any function of the form F = f(x− ct) represents a solution
to wave equation, as in ξ = A sin(a(x− ct)), or ξ = A ln(a(x− ct)).

Simple-harmonic time dependence

One form of p1 = F (x− ct) that we’ll find much use for is the case representing a single acoustic
frequency f , or harmonic solution. It is very convenient to employ harmonic solutions and repre-
sent a single frequency f , in a complex exponential such as p1 = Aei(kx−ωt) where ω equals 2πf and
where the wavenumber k equals ω

c
. Plug this into Eq.(11) and it better work.

Note that in my research, and in this course, I prefer to express complex harmonic dependence
as e−iωt. Many books and technical articles (most often in electrical engineering) use e+iωt. There is
really no difference, particularly in the study of simple systems where time t is the only indepen-
dent variable.

However, we also need to study how the field varies with position and time, as in the ei(kx−ωt),
and it is somewhat more intuitive to have the position part vary as eikx with positive increasing
position (here along the x-axis), rather than write p1 = Ae−i(kx−ωt). Otherwise, does this difference
matter? No, so long as one remains consistent and does not mix the two conventions.

More on complex exponential notation

We use complex exponential notation because manipulations and calculations are soo much
more easily carried out. But what does it mean to write p1 = Aei(kx−ωt) when this is supposed to
represent a measurement? It means that we take the real part. Let’s suppose A is also complex, say
equal to A = |A|eiϕA where ϕA is the phase of A, then the real part of Aei(kx−ωt) equals |A| cos(kx −
ωt+ ϕA).

Suppose you measure a sound field at some fixed point in space xo that can be modeled by
p1 = Aei(kxo−ωt), where f equals 2 Hz (this might be infrasound), and A is a complex amplitude
(assume for simplicity |A| = 1). A plot (Fig. 2) of the measured sound is obtained by taking the
real part of this model. Two examples are shown, for the black line A = eiπ/12 and for the magenta
line A = eiπ/3. These measurements thus represent two acoustic waves of identical magnitude,
and frequency, but different phases. So using complex representation allows for a more convenient
representation of phase.

One of the most handy things about using complex exponential notation for simple-harmonic
time dependence, i.e. the time dependence is e( ± iωt), is how easy it is to compute rms values. For
example, assume a harmonic spherical wave, p(r, t) = A

r
eikr−iωt (we discuss spherical waves next

week) which has real part representing some measured pressure pm(r, t)

pm(r, t) =
|A|
r

cos(kr − ωt+ ϕA), (13)
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The mean-square is defined as the time integral over one period T

1

T

∫ T

0

p2m(r, t)dt =
|A|2

r2
1

T

∫ T

0

cos2(kr − ωt+ ϕA)dt (14)

giving the rms pressure as prms = 1√
2

|A|
r

. Easier still, is whenever we require mean-square values
of complex harmonic quantities, then we are interested in computing pp⋆ over this same averaging
period T (often we denote as ⟨p(t)p(t)⋆⟩), where p⋆ is the conjugate, where in this example pp⋆ = |A|2

r2
.

The averaging time integral is now seen by inspection to yield the same result.
In summary for any complex harmonic function of the form x(t) = Be±iωt and B can also be

both complex and also have spatial variation,

• the mean square value ⟨x2(t)⟩ equals 1
2
|B|2,

• the rms value equals 1√
2
|B|

Exploiting this fact will help make complex life much easier.

Figure 2: Two sinusoidal varying sound waves of frequency 2 Hz, measured as at the same position xo. Data
can be represented as p1 = Aei(kxo−ωt), and the magenta data has complex amplitude A = eiπ/3, the black
data has complex amplitude A = eiπ/12
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